Trinity: High-Performance Mobile
Emulation through Graphics Projection

Di Gao, Hao Lin, Zhenhua Li, Chengen Huang, Yunhao Liu

Feng Qian, Liangyi Gong, Tianyin Xu

(EZS A ' N - NG

. . oo e—  — e e URBANA-CHAMPAIGN
Tsinghua University UNIVERSITY OF MINNESOTA




Mobile emulator: phone on your PC/server

-
g
z o ! -
y W A
* App debugging w/o hardware phones * PC-based mobile gaming

* Malware detection, cloud/edge gaming ...



What is a mobile emulator?

e A mobile emulator is a virtual machine

Mobile App Mobile App

Adaptations for
Mobile Systems
Virtual Hardware Virtual Hardware

Host OS (e.g., Windows, macQOS, Linux)

PC/Server Hardware



What is a mobile emulator?

e A mobile emulator is more than a traditional virtual machine

Ul-centric mobile OSes VS. Headless server OSes

ir Graphics processing capability is key to
I the performance of mobile emulators



2002: APl remoting : the idea of RPC

___Aep ]
@ Guest API Calll ‘@ Return Value

+ Straightforward implementation

(9 VM Exit 1 1® VM Entry - Frequent VM Exits stop the guest
RPC Server
3 Host AP| Calll ‘@ Return Value Cannot smoothly run common apps
Host Graphics E.g., Google Android Emulator (GAE)
Library/Driver

Host GPU .



2009: device emulation: async driver commands

Ao |
Guest API Call |

: + Reduced idle waiting at the guest

Async Driver CMD v
- Single-threaded rendering due to

Renderl:ng Threac the loss of high-level information
Host API Call :
v - Cannot smoothly run heavy 3D apps
Host Graphics - MU-KYM with virt
Library/Driver -8 QEMU- with virtio-gpu

Host GPU )



2018: direct emulation: breaking virtualization

[ App ]
API : .
Translation l Incomplete + Satisfactory efficiency
Host Graphics System Call - Guest-host Isolation (security)
: : Translation is damasced
Library/Driver g
Host OS - Compatibility is sacrificed

Host GPU Host CPU E.g., DAOW (Tencent Gameloop)



Our goal

A mobile emulator that can achieve
high efficiency and compatibility



In retrospect...

Virtualization-based mobile emulators
do well in compatibility (and security) but poorly in efficiency

!

Frequent VM Exits for synchronous host-side executions of APl calls

!

Our wish: let the host asynchronously process
synchronous API calls



ARTIFACT ARTIFACT ARTIFACT

EVALUATED EVALUATED EVALUATED

Contributions

* A novel graphics virtualization method called graphics projection
m Decoupling guest and host graphics processing
m Elastic flow control for coordinating the decoupled control flows

m Adaptive data teleporting for fast data flow delivery

* Trinity: the first and the only mobile emulator that can achieve
native efficiency without loosing compatibility or security

m Evaluation using standard benchmarks and real apps

m Adoption by Huawei DevEco Studio, an Android IDE with millions of

developers, to replace its originally used Google Android Emulator 10



“Hello, Triangle!”

* Draw a triangle with Android’s graphics framework OpenGL ES

= 1. Context setting API

I Bind this buffer to context
Vertex Buffer

m 2. Resource management API

Vertex coordinate data

0.0

-0.5

= 3. Drawing API

I

0.5

Vertex Buffer

E

0.5 0.0
-0.5 0.0
-0.5 0.0

0.0 0.5 0.0
05 -05 0.0

-0.5 0.0

|

Populate
—)\/ertex Buffer

Draw
—

Window

A

11



Characteristics of graphics APIs

* Many sync APIs do not immediately involve GPU
m Context and Resource calls take effect upon actual drawing

m Context and Resource calls account for 94% of all API calls

e Such APIs are fully handle-based (a handle is a small integer)

uint handle;
glGenBuffers(1l, &handle); // Resource call
glBindBuffer(GL_ARRAY BUFFER, handle); // Context call

12



Key idea: graphics projection

* Project host-side contexts/resources onto the guest address space

Resource Resources
s 7\ Handles
e Host GPU
Projection Space L y

d
=

| Shadow context:
uint handle; Resource (graphics buffer) handle currently bound handle
glGenBuffers(1l, &handle); /// Resource call

glBindBuffer (GL_ARRAY BUFFER, handle); // Context call 13



Key idea: graphics projection

* Project host-side contexts/resources onto the guest address space

Resource Resources
Handles
LA Host GPU
Projection Space S _ Y,

d
=

Shadow contexts and resource handles

“cache” the effect of Context and Resource calls
14



Decouple host and guest control/data flows

 Most Context and Resource calls are
processed in the projection space

* Their effects are asynchronously
reproduced by the host GPU

* Drawing calls are already async

Guest

Virtualization Boundary

App

J

Context
Call

/ Shadow
_ Contexts |

Projection Space

Resource Drawing
Call Call

Host

GPU
Rendering

-

Context
Call
\/ Resource \eeeeed
Handles

Resource
Call

\.

Host GPU

5
g Resources
-->

J/

15



Draw a triangle with graphics projection

Guest glGenBuffers

Host

16



Draw a triangle with graphics projection

Return a projected handle
to the guest app

Guest glGenBuffers

Host

17



Draw a triangle with graphics projection

Return a projected handle
to the guest app \Pass into

Guest glGenBuffers glBindBuffer

Host

18



Draw a triangle with graphics projection

Return a projected handle
to the guest app \Pass into

Guest glGenBuffers glBindBuffer

Host

1

Generate a real handle
Mapping: projected handle <-> real handle

19



Draw a triangle with graphics projection

Return a projected handle
to the guest app \Pass into

Guest glGenBuffers glBindBuffer glMapBuffer

Host

1

Generate a real handle
Mapping: projected handle <-> real handle

20



Draw a triangle with graphics projection

Return a projected handle
to the guest app \Pass into

Guest glGenBuffers glBindBuffer glMapBuffer

Host
| T
Generate a real handle Get the real handle from
Mapping: projected handle <-> real handle the map and call API

21



Draw a triangle with graphics projection

Return a projected handle :
, Drawing call
to the guest app Pass into I

Guest glGenBuffers glBindBuffer glMapBuffer glDrawArrays

Host
| T
Generate a real handle Get the real handle from
Mapping: projected handle <-> real handle the map and call API

22



Draw a triangle with graphics projection

Return a projected handle :
, Drawing call
to the guest app Pass into

Guest glGenBuffers glBindBuffer glMapBuffer glDrawArrays A

Host
| T
Generate a real handle Get the real handle from
Mapping: projected handle <-> real handle the map and call API

23



Draw a triangle with graphics projection

Graphics projection’s timeline

Guest glGenBuffers glBindBuffer glMapBuffer glDrawArrays A

>
Host
APl remoting’s timeline
Guest glGenBuffers idle waiting glBindBuffer glMapBuffer idle waiting e
>

Host idle waiting

24



Effectiveness of projection space

* 99.93% API calls do not need sync host-side executions

m Only 41.4% do not need sync execution in APl remoting

* 26% API calls are directly resolved at the projection space

m Mostly context/resource read APIs

e <1 MB memory cost for even a graphics-intensive app’s projection

25



Control flow oscillation

m Lightweight guest processing is fast at first, and then is blocked
s Frame rendering time is short at first, but then becomes very long

Character movement = frame rendering time x moving speed

Frame#l Frame#2 Frame#3 1 Frame#4

Abnormal @ | ) )
movement & Control flow oscillation

Character location :-.




Elastic flow control

m Key insight: guest control flow blocking can be modeled as network congestion

\\\\\ \\\\\
Bottleneck
Guest Q Host
Guest Execution Ueue Host GPU Execution

Blocked!

m |[dea: adapt the multiplicative-increase/multiplicative-decrease
(MIMD) congestion control algorithm of networking

s Multiplicatively adjust guest sleep time after a frame is rendered

27



Unsmooth data flow delivery

* Delivering data under highly dynamic situations is challenging

m System dynamics: CPU usage and available memory bandwidth

m Data dynamics: a popular 3D app can generate up to 1 GB graphics
data per second, but the data generation rate is <1 MB/s in most cases

* No single strategy fits all dynamic situations!

m E.g., a memcpy incurs copy delay, but is useful in batching calls

m Copy delay = data size / memory bandwidth

28



Adaptive data teleporting

* Decompose data delivery into three stages

e Estimate every strategy’s delay using in-situ system and data status

fo11 Y, memcpy Guest Userland
601 I
Data
APP N, write to kernel S I Buffer
o .
Done! ) Yy o .. .
N, Add to Ring | Persistent Space
LS - Add to Ring
.‘ " Guest Kernel
VM Exit \\Buffer Poll
’Q.‘Q """"" Data Render Host

Notify;[ Fetcher ] { Engine J

v’ Data delivery throughput is 5.3x larger than Google Android Emulator 29




Trinity: high-performance Android emulator

Guest - — N Guest Kernel
Userland Graphics Projection Space
- \ API g Data Queue
1101; " Context)—é—» Shadow Resource - —
’ N | Contexts Handles | & |
» Resource|—»
L ) R AN | N |
( ) : A — > |_ |
| 1| Drawing | ————23(1Cor l_ R
PR S ) Flow Control %
Customized Graphics Library :
Host - 3 Teleporting

Hardware GPU

ZA

Trinity Window

Resources
\_ )

I

_[ aemy ]

30



Evaluation

e Evaluate the extreme efficiency using standard benchmarks
* Evaluate the efficiency of running top-100 apps from Google play

e Evaluate compatibility with random 10K apps from Google Play

31



Standard graphics benchmarks

Trinity achieves an average of 93.3% (up to 110%) native hardware performance

500

Slingshot Unlimited Test 1 (3DMark)
Slingshot Unlimited Test 2 (3DMark)
Manhattan Offscreen 1080p (GFXBench)

——

B
o
]

BELEL
:::::
ccccc

nnnnnnn

:::::

=====

= s e o

(&%)
o
O

eeeee

0 ,,,,,,
a*ntaTals

aSaFadoa E,
3FaFavh I

n::u:o‘:o?JP";
a¥utatata

H

eeeee
CELLL

:::::

eeeee

=====

e aw oo

:::::

N
o
()

=====
neae moon
.............
LELY)
::::::::::

eeeee

.
wiedalalatyda gt
a¥adnoes k00

zpajuiuisiale
a ERERESERERES

Frames Per Second

LELYE
=====

e aw oo LELLE
:::::
LY
ccccc

neae

w, o e

LELT)

:::::

:::::

uuuuu
aEon EOLLE
nnnnnnnnnnnnn
rrrrr

=====

moon
aaaaaaa
==========
uuuuu
:::::
:::::

=====
BELEL =

::::::::::

cccccccccc

Native

i
E
Tialaienanadetanatadiutatin e tanan i
32313 : i : i

HH S HHHH HH H HHH
R T P LR

== wa T
L) L]
eeeee
E A, I Wt CELEL] ) D S CUELE Py D 7.7 D SN Loy

ey

PC Trinity | DAOW Bluestacks GAE _ VMware WSA QEMU-KVM 32

case
moon
LYY

0




Top-100 3D apps

* Highest efficiency in 76 apps

* For the other 24, there is
no perceivable (<6 FPS)
difference between Trinity

and the emulator yielding 8 20| | - ,f
the highest FPS Syl 1T

N A SR SA

1 10 20 30 40 50 60 70 80 90 100
e Can smoothly run all apps Apps by Increasing FPS

33



Random 10K apps

e Compatible with 97.2% of the apps (no crash with random input)

m 0.07% actively evade emulators

m 0.43% require special hardware

m 2.3% even crash on real devices

34



ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

Conclusion

AVAILABLE REPRODUCED

* A highly-efficient graphics virtualization method called
graphics projection

* Elastic flow control and adaptive data teleporting mechanisms
for matching the decoupled guest/host graphics processing rates

* The first mobile emulator that can smoothly run heavy 3D apps
without losing compatibility or security

* https://TrinityEmulator.github.io/



https://trinityemulator.github.io/

