
Trinity: High-Performance Mobile
Emulation through Graphics Projection

Di Gao, Hao Lin, Zhenhua Li, Chengen Huang, Yunhao Liu

Feng Qian, Liangyi Gong, Tianyin Xu

CNIC

2

Mobile emulator: phone on your PC/server

• App debugging w/o hardware phones

• Malware detection, cloud/edge gaming …

• PC-based mobile gaming

3

What is a mobile emulator?

• A mobile emulator is a virtual machine

Host OS (e.g., Windows, macOS, Linux)

PC/Server Hardware

Virtual Machine Monitor

Guest Mobile OS

Mobile App

Virtual Hardware

Guest Mobile OS

Mobile App

Virtual Hardware

Adaptations for
Mobile Systems

What is a mobile emulator?

• A mobile emulator is more than a traditional virtual machine

UI-centric mobile OSes

Graphics processing capability is key to
the performance of mobile emulators

Headless server OSesvs.

4

2002: API remoting : the idea of RPC

App

RPC Client

RPC Server

Host Graphics
Library/Driver

Host GPU

① Guest API Call

② VM Exit

③ Host API Call ④ Return Value

⑤ VM Entry

⑥ Return Value

5

- Frequent VM Exits stop the guest

- Cannot smoothly run common apps

+ Straightforward implementation

E.g., Google Android Emulator (GAE)

2009: device emulation: async driver commands

App

Virtual Device Driver

Rendering Thread

Host Graphics
Library/Driver

Host GPU

Guest API Call

Async Driver CMD

Host API Call

6

+ Reduced idle waiting at the guest

- Single-threaded rendering due to
the loss of high-level information

- Cannot smoothly run heavy 3D apps

E.g., QEMU-KVM with virtio-gpu

2018: direct emulation: breaking virtualization

App

Host Graphics
Library/Driver

Host GPU

API
Translation

Host CPU

Host OS

System Call
Translation

7

+ Satisfactory efficiency

- Guest-host Isolation (security)
is damaged

- Compatibility is sacrificed

Incomplete

E.g., DAOW (Tencent Gameloop)

Our goal

A mobile emulator that can achieve
high efficiency and compatibility

8

In retrospect…

Frequent VM Exits for synchronous host-side executions of API calls

9

Our wish: let the host asynchronously process
synchronous API calls

Virtualization-based mobile emulators
do well in compatibility (and security) but poorly in efficiency

10

Contributions

• A novel graphics virtualization method called graphics projection

• Trinity: the first and the only mobile emulator that can achieve
native efficiency without loosing compatibility or security

◼ Elastic flow control for coordinating the decoupled control flows

◼ Decoupling guest and host graphics processing

◼ Adaptive data teleporting for fast data flow delivery

◼ Evaluation using standard benchmarks and real apps

◼ Adoption by Huawei DevEco Studio, an Android IDE with millions of
developers, to replace its originally used Google Android Emulator

“Hello, Triangle!”

• Draw a triangle with Android’s graphics framework OpenGL ES

◼ 1. Context setting API

◼ 2. Resource management API

◼ 3. Drawing API

Vertex Buffer
Bind this buffer to context

Vertex Buffer

0.0 0.5 0.0

-0.5 -0.5 0.0

0.5 -0.5 0.0

Populate

Vertex Buffer
Draw

Window

Vertex coordinate data

11

Characteristics of graphics APIs

• Many sync APIs do not immediately involve GPU

• Such APIs are fully handle-based (a handle is a small integer)

uint handle;

glGenBuffers(1, &handle); // Resource call

glBindBuffer(GL_ARRAY_BUFFER, handle); // Context call

12

◼ Context and Resource calls take effect upon actual drawing

◼ Context and Resource calls account for 94% of all API calls

Key idea: graphics projection

• Project host-side contexts/resources onto the guest address space

Shadow
Contexts

Resource
Handles

Projection Space

Contexts Resources

Host GPU

13

uint handle;

glGenBuffers(1, &handle); // Resource call

glBindBuffer(GL_ARRAY_BUFFER, handle); // Context call

Resource (graphics buffer) handle
Shadow context:

currently bound handle

Key idea: graphics projection

• Project host-side contexts/resources onto the guest address space

Shadow
Contexts

Resource
Handles

Projection Space

Contexts Resources

Host GPU

14

Shadow contexts and resource handles
“cache” the effect of Context and Resource calls

Decouple host and guest control/data flows

• Most Context and Resource calls are
processed in the projection space

• Their effects are asynchronously
reproduced by the host GPU

• Drawing calls are already async

15

Draw a triangle with graphics projection

16

glGenBuffersGuest

Host

17

Draw a triangle with graphics projection

glGenBuffersGuest

Host

Return a projected handle
to the guest app

18

Draw a triangle with graphics projection

glGenBuffers glBindBufferGuest

Host

Pass into
Return a projected handle

to the guest app

19

Draw a triangle with graphics projection

glGenBuffers

glGenBuffers

glBindBufferGuest

Host

Pass into
Return a projected handle

to the guest app

Generate a real handle
Mapping: projected handle <-> real handle

20

Draw a triangle with graphics projection

glGenBuffers

glGenBuffers

glBindBuffer glMapBuffer

glBindBuffer

Guest

Host

Pass into
Return a projected handle

to the guest app

Generate a real handle
Mapping: projected handle <-> real handle

21

Draw a triangle with graphics projection

glGenBuffers

glGenBuffers

glBindBuffer glMapBuffer

glBindBuffer

Guest

Host

Pass into
Return a projected handle

to the guest app

Generate a real handle
Mapping: projected handle <-> real handle

Get the real handle from
the map and call API

22

Draw a triangle with graphics projection

glGenBuffers

glGenBuffers

glBindBuffer glMapBuffer

glBindBuffer

Guest

Host

glDrawArrays

Drawing call

glMapBuffer

Pass into
Return a projected handle

to the guest app

Generate a real handle
Mapping: projected handle <-> real handle

Get the real handle from
the map and call API

glGenBuffers

glGenBuffers

glBindBuffer glMapBuffer

glBindBuffer

Guest

Host

glDrawArrays

glDrawArrays

Drawing call

glMapBuffer

Pass into

23

Draw a triangle with graphics projection

Return a projected handle
to the guest app

Generate a real handle
Mapping: projected handle <-> real handle

Get the real handle from
the map and call API

glGenBuffers

glGenBuffers

glBindBuffer glMapBuffer

glBindBuffer glMapBuffer

Guest

Host

idle waiting

glGenBuffers

glGenBuffers

glBindBuffer glMapBuffer

glBindBuffer

Guest

Host

glDrawArrays

glDrawArrays

API remoting’s timeline

idle waiting

idle waiting

glMapBuffer

24

…

Draw a triangle with graphics projection

Graphics projection’s timeline

Effectiveness of projection space

• 99.93% API calls do not need sync host-side executions

◼ Only 41.4% do not need sync execution in API remoting

• 26% API calls are directly resolved at the projection space

◼ Mostly context/resource read APIs

• <1 MB memory cost for even a graphics-intensive app’s projection

25

Control flow oscillation

◼ Lightweight guest processing is fast at first, and then is blocked

26

Normal frame rendering
Character location

Frame#1 Frame#2 Frame#3 Frame#4

Control flow oscillation
Abnormal
movement

Character location

Frame#1 Frame#2 Frame#3 Frame#4

◼ Frame rendering time is short at first, but then becomes very long

Character movement = frame rendering time ×moving speed

Elastic flow control

◼ Key insight: guest control flow blocking can be modeled as network congestion

27

◼ Idea: adapt the multiplicative-increase/multiplicative-decrease
(MIMD) congestion control algorithm of networking

◼ Multiplicatively adjust guest sleep time after a frame is rendered

Queue
Guest

Guest Execution
Host

Host GPU Execution

Bottleneck

Blocked!

Unsmooth data flow delivery

◼ System dynamics: CPU usage and available memory bandwidth

28

• Delivering data under highly dynamic situations is challenging

◼ Data dynamics: a popular 3D app can generate up to 1 GB graphics
data per second, but the data generation rate is <1 MB/s in most cases

• No single strategy fits all dynamic situations!

Guest Kernel

◼ E.g., a memcpy incurs copy delay, but is useful in batching calls

◼ Copy delay ≈ data size / memory bandwidth

Adaptive data teleporting

29

• Estimate every strategy’s delay using in-situ system and data status

Guest Userland

Data

APP

.
Aggregation

Y, memcpy

BufferN, write to kernel

Guest Kernel

.

Persistent Space

Y

N, Add to Ring

Host

Ring
Buffer

Data
FetcherNotify

Poll

Notify

Y,
VM Exit

Done!
N Persistence

Add to Ring

Render
Engine

• Decompose data delivery into three stages

 Data delivery throughput is 5.3x larger than Google Android Emulator

Trinity: high-performance Android emulator

30

Guest
Userland

 01011
11010

APP

Context

Resource

Drawing

Graphics
API

Customized Graphics Library

Projection Space

Shadow
Contexts

Resource
Handles

Flow Control

Guest Kernel

...

Data Queue

TeleportingHost
Hardware GPU

Trinity Window

QEMUContexts Resources

Evaluation

• Evaluate the extreme efficiency using standard benchmarks

• Evaluate the efficiency of running top-100 apps from Google play

• Evaluate compatibility with random 10K apps from Google Play

31

Standard graphics benchmarks

Trinity achieves an average of 93.3% (up to 110%) native hardware performance

32

Top-100 3D apps

• For the other 24, there is
no perceivable (<6 FPS)
difference between Trinity
and the emulator yielding
the highest FPS

• Can smoothly run all apps

33

• Highest efficiency in 76 apps

Random 10K apps

• Compatible with 97.2% of the apps (no crash with random input)

34

◼ 0.07% actively evade emulators

◼ 0.43% require special hardware

◼ 2.3% even crash on real devices

Conclusion

• Elastic flow control and adaptive data teleporting mechanisms
for matching the decoupled guest/host graphics processing rates

• A highly-efficient graphics virtualization method called
graphics projection

• https://TrinityEmulator.github.io/

35

• The first mobile emulator that can smoothly run heavy 3D apps
without losing compatibility or security

https://trinityemulator.github.io/

